Representing idempotents as a sum of two nilpotents - an approach via matrices over division rings
We present new characterizations of the rings for which every element is a sum of two tripotents and a nilpotent that commute. These extend the results of Z. L. Ying, M. T. Koşan, Y. Zhou (2016) and Y. Zhou (2018).
An element in a ring R with identity is said to be strongly nil clean if it is the sum of an idempotent and a nilpotent that commute, R is said to be strongly nil clean if every element of R is strongly nil clean. Let C(R) be the center of a ring R and g(x) be a fixed polynomial in C(R)[x]. Then R is said to be strongly g(x)-nil clean if every element in R is a sum of a nilpotent and a root of g(x) that commute. In this paper, we give some relations between strongly nil clean rings and strongly...