Idempotent distributive semirings II..
In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as for all ideals , of . In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family...
The maximal column rank of an m by n matrix is the maximal number of the columns of A which are linearly independent. We compare the maximal column rank with rank of matrices over a nonbinary Boolean algebra. We also characterize the linear operators which preserve the maximal column ranks of matrices over nonbinary Boolean algebra.
This paper concerns two notions of rank of fuzzy matrices: maximal column rank and column rank. We investigate the difference of them. We also characterize the linear operators which preserve the maximal column rank of fuzzy matrices. That is, a linear operator T preserves maximal column rank if and only if it has the form T(X) = UXV with some invertible fuzzy matrices U and V.
Medial modes, a natural generalization of normal bands, were investigated by Płonka. Rectangular algebras, a generalization of rectangular bands (diagonal modes) were investigated by Pöschel and Reichel. In this paper we show that each medial mode embeds as a subreduct into a semimodule over a certain ring, and that a similar theorem holds for each Lallement sum of cancellative modes over a medial mode. Similar results are obtained for rectangular algebras. The paper generalizes earlier results...
Semirings are modifications of unitary rings where the additive reduct does not form a group in general, but only a monoid. We characterize multiplicatively idempotent semirings and Boolean rings as semirings satisfying particular identities. Further, we work with varieties of enriched semirings. We show that the variety of enriched multiplicatively idempotent semirings differs from the join of the variety of enriched unitary Boolean rings and the variety of enriched bounded distributive lattices....
A semiring S is said to be a quasi completely regular semiring if for any a ∈ S there exists a positive integer n such that na is completely regular. The present paper is devoted to the study of completely Archimedean semirings. We show that a semiring S is a completely Archimedean semiring if and only if it is a nil-extension of a completely simple semiring. This result extends the crucial structure theorem of completely Archimedean semigroup.
Parasemifields (i.e., commutative semirings whose multiplicative semigroups are groups) are considered in more detail. We show that if a parasemifield contains as a subparasemifield and is generated by , , as a semiring, then is (as a semiring) not finitely generated.