Klassifikation der einfachen reellen speziellen Jordan-Tripelsysteme.
A linear subspace M of a Jordan algebra J is said to be a Lie triple ideal of J if [M,J,J] ⊆ M, where [·,·,·] denotes the associator. We show that every Lie triple ideal M of a nondegenerate Jordan algebra J is either contained in the center of J or contains the nonzero Lie triple ideal [U,J,J], where U is the ideal of J generated by [M,M,M]. Let H be a Jordan algebra, let J be a prime nondegenerate Jordan algebra with extended centroid C and unital central closure Ĵ, and let...
In this paper we prove that a nondegenerate Jordan algebra satisfying the descending chain condition on the principal inner ideals, also satisfies the ascending chain condition on the annihilators of the principal inner ideals. We also study annihilators in Jordan algebras without nilpotent elements and in JB-algebras.
In this paper we will examine the relationship between modularity in the lattices of subalgebras of A and A(+), for A an associative algebra over an algebraically closed field. To this aim we will construct an ideal which measures the modularity of an algebra (not necessarily associative) in paragraph 1, examine modular associative algebras in paragraph 2, and prove in paragraph 3 that the ideal constructed in paragraph 1 coincides for A and A(+). We will also examine some properties of the ideal...
This paper is concerned with the action of a special formally real Jordan algebra U on an Euclidean space E, with the decomposition of E under this action and with an application of this decomposition to the study of Bessel functions on the self-adjoint homogeneous cone associated to U.