Loading [MathJax]/extensions/MathZoom.js
Skip to main content (access key 's'), Skip to navigation (access key 'n'), Accessibility information (access key '0')
EuDML - The European Digital Mathematics Library

Login | Register | (Why Register?)

  • Home
  • Advanced Search
  • Browse by Subject
  • Browse by Journals
  • Refs Lookup
  • Subjects
  • 18-XX Category theory; homological algebra
  • 18Axx General theory of categories and functors
  • 18A10 Graphs, diagram schemes, precategories [See especially ]

18Axx General theory of categories and functors

  • 18A05 Definitions, generalizations
  • 18A10 Graphs, diagram schemes, precategories [See especially ]
  • 18A15 Foundations, relations to logic and deductive systems
  • 18A20 Epimorphisms, monomorphisms, special classes of morphisms, null morphisms
  • 18A22 Special properties of functors (faithful, full, etc.)
  • 18A23 Natural morphisms, dinatural morphisms
  • 18A25 Functor categories, comma categories
  • 18A30 Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.)
  • 18A32 Factorization of morphisms, substructures, quotient structures, congruences, amalgams
  • 18A35 Categories admitting limits (complete categories), functors preserving limits, completions
  • 18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
  • 18A99 None of the above, but in this section
  • Items

All a b c d e f g h i j k l m n o p q r s t u v w x y z Other

Page 1

Displaying 1 – 7 of 7

Showing per page

Semigroups and the structure of categories

Jerry R. Beehler, Arnold Johanson (1976)

Mathematica Slovaca

Structures Quasi-Quotient.

CH. EHRESMANN (1967)

Mathematische Annalen

Sur le genre d'esquissabilité des catégories modelables (accessibles) possédant les produits de deux

C. Lair (1996)

Diagrammes

Sur le genre d'esquissabilité des catégories modelables (accessibles) possédant un objet terminal

C. Lair (1996)

Diagrammes

Sur les genres d'esquissabilité des catégories modelables (accessibles) possédant les limites d'indexations finies (resp. finies et non vides, finies et connexes, finies et connexes et non vides)

C. Lair (1996)

Diagrammes

Sur quelques problèmes de plongement en algèbre : II. Extensions de Kan et prolongements de foncteurs à des graphes multiplicatifs

C. Henry (1986)

Diagrammes

Systèmes de générateurs et relations pour les catégories enrichies

F. Cury (1979)

Diagrammes

Currently displaying 1 – 7 of 7

Page 1

EuDML
  • About EuDML initiative
  • Feedback
  •  version 2.1.7