Statistical convergence of subsequences of a given sequence.
This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.
For an arbitrary category, we consider the least class of functors containing the projections and closed under finite products, finite coproducts, parameterized initial algebras and parameterized final coalgebras, i.e. the class of functors that are definable by -terms. We call the category -bicomplete if every -term defines a functor. We provide concrete examples of such categories and explicitly characterize this class of functors for the category of sets and functions. This goal is achieved...
For an arbitrary category, we consider the least class of functors containing the projections and closed under finite products, finite coproducts, parameterized initial algebras and parameterized final coalgebras, i.e. the class of functors that are definable by μ-terms. We call the category μ-bicomplete if every μ-term defines a functor. We provide concrete examples of such categories and explicitly characterize this class of functors for the category of sets and functions. This goal is achieved...