On extensions of functors to the Kleisli category
We call metamorphosis of a given category an autoequivalence functor up to within natural equivalence. We show that, given a group G, the group of metamorphoses of the category of G-sets (as well as the corresponding group for ?sufficiently big? subcategories) may be naturally identified to the group of outer automorphism of G. We get by this way a natural description of a group of known operations on tessellations of a surface: the identity operation, the Poincaré duality, and four others which...
We add sequential operations to the categorical algebra of weighted and Markov automata introduced in [L. de Francesco Albasini, N. Sabadini and R.F.C. Walters, arXiv:0909.4136]. The extra expressiveness of the algebra permits the description of hierarchical systems, and ones with evolving geometry. We make a comparison with the probabilistic automata of Lynch et al. [SIAM J. Comput. 37 (2007) 977–1013].
We add sequential operations to the categorical algebra of weighted and Markov automata introduced in [L. de Francesco Albasini, N. Sabadini and R.F.C. Walters, arXiv:0909.4136]. The extra expressiveness of the algebra permits the description of hierarchical systems, and ones with evolving geometry. We make a comparison with the probabilistic automata of Lynch et al. [SIAM J. Comput.37 (2007) 977–1013].