Displaying 41 – 60 of 81

Showing per page

The notion of closedness in topological categories

Mehmet Baran (1993)

Commentationes Mathematicae Universitatis Carolinae

In [1], various generalizations of the separation properties, the notion of closed and strongly closed points and subobjects of an object in an arbitrary topological category are given. In this paper, the relationship between various generalized separation properties as well as relationship between our separation properties and the known ones ([4], [5], [7], [9], [10], [14], [16]) are determined. Furthermore, the relationships between the notion of closedness and strongly closedness are investigated...

The Roquette category of finite p -groups

Serge Bouc (2015)

Journal of the European Mathematical Society

Let p be a prime number. This paper introduces the Roquette category p of finite p -groups, which is an additive tensor category containing all finite p -groups among its objects. In p , every finite p -group P admits a canonical direct summand P , called the edge of P . Moreover P splits uniquely as a direct sum of edges of Roquette p -groups, and the tensor structure of p can be described in terms of such edges. The main motivation for considering this category is that the additive functors from p to...

Currently displaying 41 – 60 of 81