Page 1

Displaying 1 – 16 of 16

Showing per page

Galois H-objects with a normal basis in closed categories. A cohomological interpretation.

José N. Alonso Alvarez, José Manuel Fernández Vilaboa (1993)

Publicacions Matemàtiques

In this paper, for a cocommutative Hopf algebra H in a symmetric closed category C with basic object K, we get an isomorphism between the group of isomorphism classes of Galois H-objects with a normal basis and the second cohomology group H2(H,K) of H with coefficients in K. Using this result, we obtain a direct sum decomposition for the Brauer group of H-module Azumaya monoids with inner action:BMinn(C,H) ≅ B(C) ⊕ H2(H,K)In particular, if C is the symmetric closed category of C-modules with K a...

Gaps and dualities in Heyting categories

Jaroslav Nešetřil, Aleš Pultr, Claude Tardif (2007)

Commentationes Mathematicae Universitatis Carolinae

We present an algebraic treatment of the correspondence of gaps and dualities in partial ordered classes induced by the morphism structures of certain categories which we call Heyting (such are for instance all cartesian closed categories, but there are other important examples). This allows to extend the results of [14] to a wide range of more general structures. Also, we introduce a notion of combined dualities and discuss the relation of their structure to that of the plain ones.

Currently displaying 1 – 16 of 16

Page 1