The search session has expired. Please query the service again.
A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.
Rim and Teply [10] investigated relatively exact modules in connection with the existence of torsionfree covers. In this note we shall study some properties of the lattice of submodules of a torsionfree module consisting of all submodules of such that is torsionfree and such that every torsionfree homomorphic image of the relative injective hull of is relatively injective. The results obtained are applied to the study of relatively exact covers of torsionfree modules. As an application...
Currently displaying 1 –
3 of
3