Page 1

Displaying 1 – 2 of 2

Showing per page

Motifs de dimension finie

Yves André (2003/2004)

Séminaire Bourbaki

On sait que les groupes de Chow d’une variété projective ne sont pas de type fini, et ne peuvent même être paramétrés par une variété algébrique, en général. Pourtant, S.-I. Kimura et P. O’Sullivan ont conjecturé (indépendamment l’un de l’autre) que les motifs de Chow, définis en termes de correspondances algébriques modulo l’équivalence rationnelle, sont de “dimension finie”au sens où, tout comme les super-fibrés vectoriels, ils sont somme d’un facteur dont une puissance extérieure est nulle et...

Currently displaying 1 – 2 of 2

Page 1