Page 1

Displaying 1 – 3 of 3

Showing per page

Proof of Nadel’s conjecture and direct image for relative K -theory

Alain Berthomieu (2002)

Bulletin de la Société Mathématique de France

A “relative” K -theory group for holomorphic or algebraic vector bundles on a compact or quasiprojective complex manifold is constructed, and Chern-Simons type characteristic classes are defined on this group in the spirit of Nadel. In the projective case, their coincidence with the Abel-Jacobi image of the Chern classes of the bundles is proved. Some applications to families of holomorphic bundles are given and two Riemann-Roch type theorems are proved for these classes.

Propriétés du groupe tannakien des structures de Hodge p -adiques et torseur entre cohomologies cristalline et étale

Jean-Pierre Wintenberger (1997)

Annales de l'institut Fourier

On donne des propriétés de la catégorie tannakienne des modules de Dieudonné filtrés sur un corps p -adique (ces modules de Dieudonné jouent en p -adique un rôle analogue aux structures de Hodge complexes). On prouve l’existence d’un foncteur fibre sur Q p et la simple connexité du groupe associé. Ceci permet de montrer, sous la conjecture de Fontaine : “faiblement admissible entraîne admissible”, une conjecture de Rapoport et Zink décrivant le torseur entre cohomologie cristalline et étale, et de prouver...

Currently displaying 1 – 3 of 3

Page 1