The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of this paper is to introduce the notion of BG-injectors of finite groups and invoke this notion to determine the B-injectors of Sₙ and Aₙ and to prove that they are conjugate. This paper provides a new, more straightforward and constructive proof of a result of Bialostocki which determines the B-injectors of the symmetric and alternating groups.
Let α, β and γ be algebraic numbers of respective degrees a, b and c over ℚ such that α + β + γ = 0. We prove that there exist algebraic numbers α₁, β₁ and γ₁ of the same respective degrees a, b and c over ℚ such that α₁ β₁ γ₁ = 1. This proves a previously formulated conjecture. We also investigate the problem of describing the set of triplets (a,b,c) ∈ ℕ³ for which there exist finite field extensions K/k and L/k (of a fixed field k) of degrees a and b, respectively, such that the degree of the...
Currently displaying 1 –
4 of
4