Semi-presentations for the sporadic simple groups.
Let be a finite group and let be the set of prime divisors of for which . The Gruenberg-Kegel graph of , denoted , is defined as follows: its vertex set is and two different vertices and are adjacent by an edge if and only if contains an element of order . The degree of a vertex in is denoted by and the -tuple is said to be the degree pattern of . Moreover, if is the vertex set of a connected component of , then the largest -number which divides , is said to be an...
We consider the Suzuki groups and we show that there are no nilpotent self-normalizing subgroups and there are three conjugacy classes of F-projectors, where F is the formation of supersoluble groups.
We prove that in the Mathieu groups there is a unique conjugacy class of nilpotent self-normalizing subgroups, the class of the 2-Sylow subgroups. In the Janko group there are no nilpotent self-normalizing subgroups.