Semi-presentations for the sporadic simple groups.
Page 1
Nickerson, S.J., Wilson, R.A. (2005)
Experimental Mathematics
A. Mohammadzadeh, Ali Reza Moghaddamfar (2017)
Commentationes Mathematicae Universitatis Carolinae
Let be a finite group and let be the set of prime divisors of for which . The Gruenberg-Kegel graph of , denoted , is defined as follows: its vertex set is and two different vertices and are adjacent by an edge if and only if contains an element of order . The degree of a vertex in is denoted by and the -tuple is said to be the degree pattern of . Moreover, if is the vertex set of a connected component of , then the largest -number which divides , is said to be an...
H. Pahlings (1988)
Rendiconti del Seminario Matematico della Università di Padova
H. Pahlings (1989)
Rendiconti del Seminario Matematico della Università di Padova
R.A. Wilson (1987)
Inventiones mathematicae
Suleiman, Ibrahim A.I., Wilson, Robert A. (1995)
Experimental Mathematics
Alma D’Aniello (1982)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
We consider the Suzuki groups and we show that there are no nilpotent self-normalizing subgroups and there are three conjugacy classes of F-projectors, where F is the formation of supersoluble groups.
Alma D'Aniello (1983)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
We prove that in the Mathieu groups there is a unique conjugacy class of nilpotent self-normalizing subgroups, the class of the 2-Sylow subgroups. In the Janko group there are no nilpotent self-normalizing subgroups.
Page 1