Page 1

Displaying 1 – 8 of 8

Showing per page

Several quantitative characterizations of some specific groups

A. Mohammadzadeh, Ali Reza Moghaddamfar (2017)

Commentationes Mathematicae Universitatis Carolinae

Let G be a finite group and let π ( G ) = { p 1 , p 2 , ... , p k } be the set of prime divisors of | G | for which p 1 < p 2 < < p k . The Gruenberg-Kegel graph of G , denoted GK ( G ) , is defined as follows: its vertex set is π ( G ) and two different vertices p i and p j are adjacent by an edge if and only if G contains an element of order p i p j . The degree of a vertex p i in GK ( G ) is denoted by d G ( p i ) and the k -tuple D ( G ) = ( d G ( p 1 ) , d G ( p 2 ) , ... , d G ( p k ) ) is said to be the degree pattern of G . Moreover, if ω π ( G ) is the vertex set of a connected component of GK ( G ) , then the largest ω -number which divides | G | , is said to be an...

Sull'esistenza di sottogruppi nilpotenti auto-normalizzanti in alcuni gruppi semplici

Alma D’Aniello (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider the Suzuki groups and we show that there are no nilpotent self-normalizing subgroups and there are three conjugacy classes of F-projectors, where F is the formation of supersoluble groups.

Sull’esistenza di sottogruppi nilpotenti autonormalizzanti in alcuni gruppi semplici, II

Alma D'Aniello (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove that in the Mathieu groups there is a unique conjugacy class of nilpotent self-normalizing subgroups, the class of the 2-Sylow subgroups. In the Janko group J 1 there are no nilpotent self-normalizing subgroups.

Currently displaying 1 – 8 of 8

Page 1