Displaying 261 – 280 of 1355

Showing per page

Erratum to: “Subnormal, permutable, and embedded subgroups in finite groups”

James Beidleman, Mathew Ragland (2012)

Open Mathematics

The original version of the article was published in Central European Journal of Mathematics, 2011, 9(4), 915–921, DOI: 10.2478/s11533-011-0029-8. Unfortunately, the original version of this article contains a mistake: Lemma 2.1 (2) is not true. We correct Lemma 2.2 (2) and Theorem 1.1 in our paper where this lemma was used.

Every 2 -group with all subgroups normal-by-finite is locally finite

Enrico Jabara (2018)

Czechoslovak Mathematical Journal

A group G has all of its subgroups normal-by-finite if H / H G is finite for all subgroups H of G . The Tarski-groups provide examples of p -groups ( p a “large” prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a 2 -group with every subgroup normal-by-finite is locally finite. We also prove that if | H / H G | 2 for every subgroup H of G , then G contains an Abelian subgroup of index at most 8 .

Expansion in finite simple groups of Lie type

Emmanuel Breuillard, Ben J. Green, Robert Guralnick, Terence Tao (2015)

Journal of the European Mathematical Society

We show that random Cayley graphs of finite simple (or semisimple) groups of Lie type of fixed rank are expanders. The proofs are based on the Bourgain-Gamburd method and on the main result of our companion paper [BGGT].

Factoring an odd abelian group by lacunary cyclic subsets

Sándor Szabó (2010)

Discussiones Mathematicae - General Algebra and Applications

It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.

Currently displaying 261 – 280 of 1355