The lattice of very-well-placed subgroups
The Ore conjecture, posed in 1951, states that every element of every finite non-abelian simple group is a commutator. Despite considerable effort, it remains open for various infinite families of simple groups. In this paper we develop new strategies, combining character-theoretic methods with other ingredients, and use them to establish the conjecture.
For a finite group and a fixed Sylow -subgroup of , Ballester-Bolinches and Guo proved in 2000 that is -nilpotent if every element of with order lies in the center of and when , either every element of with order lies in the center of or is quaternion-free and is -nilpotent. Asaad introduced weakly pronormal subgroup of in 2014 and proved that is -nilpotent if every element of with order is weakly pronormal in and when , every element of with order is also...