Displaying 41 – 60 of 89

Showing per page

The Ore conjecture

Martin Liebeck, E.A. O’Brien, Aner Shalev, Pham Tiep (2010)

Journal of the European Mathematical Society

The Ore conjecture, posed in 1951, states that every element of every finite non-abelian simple group is a commutator. Despite considerable effort, it remains open for various infinite families of simple groups. In this paper we develop new strategies, combining character-theoretic methods with other ingredients, and use them to establish the conjecture.

The p -nilpotency of finite groups with some weakly pronormal subgroups

Jianjun Liu, Jian Chang, Guiyun Chen (2020)

Czechoslovak Mathematical Journal

For a finite group G and a fixed Sylow p -subgroup P of G , Ballester-Bolinches and Guo proved in 2000 that G is p -nilpotent if every element of P G ' with order p lies in the center of N G ( P ) and when p = 2 , either every element of P G ' with order 4 lies in the center of N G ( P ) or P is quaternion-free and N G ( P ) is 2 -nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p -nilpotent if every element of P with order p is weakly pronormal in G and when p = 2 , every element of P with order 4 is also...

Currently displaying 41 – 60 of 89