Polynomial and Term Functions over Groups with Coprime Chief Factors.
All finite simple groups of Lie type of rank over a field of size , with the possible exception of the Ree groups , have presentations with at most 49 relations and bit-length . Moreover, and have presentations with 3 generators; 7 relations and bit-length , while has a presentation with 6 generators, 25 relations and bit-length .
We show that in a finite group which is -nilpotent for at most one prime dividing its order, there exists an element whose conjugacy class length is divisible by more than half of the primes dividing .
For an algebraic number field with -class group of type , the structure of the -class groups of the four unramified cyclic cubic extension fields , , of is calculated with the aid of presentations for the metabelian Galois group of the second Hilbert -class field of . In the case of a quadratic base field it is shown that the structure of the -class groups of the four -fields frequently determines the type of principalization of the -class group of in . This provides...
Let G be a finite group of even order. We give some bounds for the probability p(G) that a randomly chosen element in G has a square root. In particular, we prove that p(G) ≤ 1 - ⌊√|G|⌋/|G|. Moreover, we show that if the Sylow 2-subgroup of G is not a proper normal elementary abelian subgroup of G, then p(G) ≤ 1 - 1/√|G|. Both of these bounds are best possible upper bounds for p(G), depending only on the order of G.
We first note that a result of Gowers on product-free sets in groups has an unexpected consequence: If is the minimal degree of a representation of the finite group , then for every subset of with we have . We use this to obtain improved versions of recent deep theorems of Helfgott and of Shalev concerning product decompositions of finite simple groups, with much simpler proofs. On the other hand, we prove a version of Jordan’s theorem which implies that if , then has a proper subgroup...