Free Quotients of Congruence Subgroups of SL2 Over a Coordinate Ring.
A.W. Mason (1988)
Mathematische Zeitschrift
Holt, Derek F., Rees, Sarah (1996)
Experimental Mathematics
David A. Cox, Walter R. Parry (1984)
Journal für die reine und angewandte Mathematik
S. Kolmer (1966)
Acta Arithmetica
Donald G. James (1981)
Mathematische Zeitschrift
M.-L. Lang, C.-H. Lim, S.-P. Tan (1995)
Mathematische Zeitschrift
M. Burger (1991)
Journal für die reine und angewandte Mathematik
J. Mennicke, J. Elstrodt, F. Grunewald (1990)
Inventiones mathematicae
Hans Petersson (1974)
Journal für die reine und angewandte Mathematik
Himanee Apte, Alexei Stepanov (2014)
Open Mathematics
Suslin’s local-global principle asserts that if a matrix over a polynomial ring vanishes modulo the independent variable and is locally elementary then it is elementary. In this article we prove Suslin’s local-global principle for principal congruence subgroups of Chevalley groups. This result is a common generalization of the result of Abe for the absolute case and Apte, Chattopadhyay and Rao for classical groups. For the absolute case the localglobal principle was recently obtained by Petrov and...
J.L. Brenner, R.C. Lyndon (1983)
Mathematische Annalen
Avner Ash (1988)
Inventiones mathematicae
Leonid N. Vaserstein (1988)
Commentarii mathematici Helvetici
Morris Newman (1978)
Mathematische Annalen
Martin Kneser (1979)
Journal für die reine und angewandte Mathematik
M. Chiara Tamburini, Paola Zucca (2000)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
We show that the special linear group , over the integers, is not -generated. This gives a negative answer to a question of M. Conder.
Slavyana Geninska (2014)
Annales de la faculté des sciences de Toulouse Mathématiques
This is a small survey paper about connections between the arithmetic and geometric properties in the case of arithmetic Fuchsian groups.
Algebra i Logika
H. Zassenhaus, J. Neubüser, H. Brown (1972)
Numerische Mathematik
H. Zassenhaus, J. Neubüser, H. Brown (1972/1973)
Numerische Mathematik