Lifting Möbius groups: Addendum.
Button, J. O. (2002)
The New York Journal of Mathematics [electronic only]
F.E.A. Johnson (1994)
Collectanea Mathematica
A. O. Lopes, Ph. Thieullen (2006)
Annales de l'I.H.P. Analyse non linéaire
Grzegorz Gromadzki (1988)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Asmus L. Schmidt (1977)
Journal für die reine und angewandte Mathematik
Asmus L. Schmidt (1976)
Journal für die reine und angewandte Mathematik
Robert A. Kucharczyk (2015)
Acta Arithmetica
We prove a rigidity theorem for semiarithmetic Fuchsian groups: If Γ₁, Γ₂ are two semiarithmetic lattices in PSL(2,ℝ ) virtually admitting modular embeddings, and f: Γ₁ → Γ₂ is a group isomorphism that respects the notion of congruence subgroups, then f is induced by an inner automorphism of PGL(2,ℝ ).
Paula Cohen, Jürgen Wolfart (1990)
Acta Arithmetica
Gareth A. Jones (1980)
Journal für die reine und angewandte Mathematik
David Singerman, Paul Watson (1997)
Revista Matemática de la Universidad Complutense de Madrid
We say that a finite group G of automorphisms of a Riemann surface X is non-maximal in genus g if (i) G acts as a group of automorphisms of some compact Riemann surface Xg of genus g and (ii), for all such surfaces Xg , |Aut Xg| > |G|. In this paper we investigate the case where G is a cyclic group Cn of order n. If Cn acts on only finitely many surfaces of genus g, then we completely solve the problem of finding all such pairs (n,g).
Colin Maclachlan (1973)
Mathematische Zeitschrift
Slavyana Geninska (2014)
Annales de la faculté des sciences de Toulouse Mathématiques
This is a small survey paper about connections between the arithmetic and geometric properties in the case of arithmetic Fuchsian groups.
Bujalance, E. (1997)
Annales Academiae Scientiarum Fennicae. Mathematica
Troels Jorgensen (1973)
Mathematica Scandinavica
G. Gromadzki (2009)
Publicacions Matemàtiques
Shihai Yang (2014)
Czechoslovak Mathematical Journal
One of the basic questions in the Kleinian group theory is to understand both algebraic and geometric limiting behavior of sequences of discrete subgroups. In this paper we consider the geometric convergence in the setting of the isometric group of the real or complex hyperbolic space. It is known that if is a non-elementary finitely generated group and a sequence of discrete and faithful representations, then the geometric limit of is a discrete subgroup of . We generalize this result by...
Leininger, Christopher J. (2004)
Geometry & Topology
M. Izquierdo (1995)
Mathematica Scandinavica
Pekka Tukia (1985)
Mathematica Scandinavica
Ewa Tyszkowska (2003)
Open Mathematics
The famous theorem of Belyi states that the compact Riemann surface X can be defined over the number field if and only if X can be uniformized by a finite index subgroup Γ of a Fuchsian triangle group Λ. As a result such surfaces are now called Belyi surfaces. The groups PSL(2,q),q=p n are known to act as the groups of automorphisms on such surfaces. Certain aspects of such actions have been extensively studied in the literature. In this paper, we deal with symmetries. Singerman showed, using acertain...