On -hyperelliptic involutions of Riemann surfaces.
A compact Riemann surface X of genus g > 1 is said to be p-hyperelliptic if X admits a conformal involution ϱ, called a p-hyperelliptic involution, for which X/ϱ is an orbifold of genus p. If in addition X admits a q-hypereliptic involution then we say that X is pq-hyperelliptic. We give a necessary and sufficient condition on p,q and g for existence of a pq-hyperelliptic Riemann surface of genus g. Moreover we give some conditions under which p- and q-hyperelliptic involutions of a pq-hyperelliptic...
Let be a commutative ring, an -module and a group of -automorphisms of , usually with some sort of rank restriction on . We study the transfer of hypotheses between and such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose is -Noetherian. If has finite rank, then also is -Noetherian. Further, if is -Noetherian and if only certain abelian sections...
Let F be a field, A be a vector space over F, and GL(F,A) the group of all automorphisms of the vector space A. A subspace B of A is called nearly G-invariant, if dimF(BFG/B) is finite. A subspace B is called almost G-invariant, if dimF(B/CoreG(B)) is finite. In the present article we begin the study of subgroups G of GL(F,A) such that every subspace of A is either nearly G-invariant or almost G-invariant. More precisely, we consider the case when G is a periodic p′-group where p = charF.