Index Transforms for Multidimensional DFT's and Convolutions.
We study the minimal number of elements of maximal order occurring in a zero-sumfree sequence over a finite Abelian p-group. For this purpose, and in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, our method implies that, if we denote by exp(G) the exponent of the finite Abelian p-group G considered, every zero-sumfree sequence S with maximal possible length over...
We say that a subgroup is isolated in a group if for every we have either or . We describe the set of isolated subgroups of a finite abelian group. The technique used is based on an interesting connection between isolated subgroups and the function sum of element orders of a finite group.
In this paper we formalized some theorems concerning the cyclic groups of prime power order. We formalize that every commutative cyclic group of prime power order is isomorphic to a direct product of family of cyclic groups [1], [18].
We have been working on the formalization of groups. In [1], we encoded some theorems concerning the product of cyclic groups. In this article, we present the generalized formalization of [1]. First, we show that every finite commutative group which order is composite number is isomorphic to a direct product of finite commutative groups which orders are relatively prime. Next, we describe finite direct products of finite commutative groups
In this article, we formalize that every finite cyclic group is isomorphic to a direct product of finite cyclic groups which orders are relative prime. This theorem is closely related to the Chinese Remainder theorem ([18]) and is a useful lemma to prove the basis theorem for finite abelian groups and the fundamental theorem of finite abelian groups. Moreover, we formalize some facts about the product of a finite sequence of abelian groups.