Loading [MathJax]/extensions/MathZoom.js
A new class of abelian -groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).
Let be a -mixed abelian group and is a commutative perfect integral domain of . Then, the first main result is that the group of all normalized invertible elements is a -group if and only if is a -group. In particular, the second central result is that if is a -group, the -algebras isomorphism between the group algebras and for an arbitrary but fixed group implies is a -mixed abelian -group and even more that the high subgroups of and are isomorphic, namely, . Besides,...
Suppose is an abelian torsion group with a subgroup such that is countable that is, in other words, is a torsion countable abelian extension of . A problem of some group-theoretic interest is that of whether , a class of abelian groups, does imply that . The aim of the present paper is to settle the question for certain kinds of groups, thus extending a classical result due to Wallace (J. Algebra, 1981) proved when coincides with the class of all totally projective -groups.
Currently displaying 1 –
4 of
4