On the defect theorem and simpliflability.
If and are positive integers with and , then the setis a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid with units and any we say that is a factorization length of if and only if there exist irreducible elements of and . Let be the set of all such lengths (where whenever ). The Delta-set of the element is defined as the set of gaps in : and the Delta-set of the monoid is given by . We consider the when is an ACM with...
We study semigroups of labellings associated to a graph. These generalise the Jukes-Cantor model and phylogenetic toric varieties defined in [Buczynska W., Phylogenetic toric varieties on graphs, J. Algebraic Combin., 2012, 35(3), 421–460]. Our main theorem bounds the degree of the generators of the semigroup by g + 1 when the graph has first Betti number g. Also, we provide a series of examples where the bound is sharp.
In this paper we consider the semigroup Mₙ of all monotone transformations on the chain Xₙ under the operation of composition of transformations. First we give a presentation of the semigroup Mₙ and some propositions connected with its structure. Also, we give a description and some properties of the class of all monotone transformations with rank n-1. After that we characterize the maximal subsemigroups of the semigroup Mₙ and the subsemigroups of Mₙ which are maximal in .
In this study, we characterize all families of saturated numerical semigroups with multiplicity four. We also present some results about invariants of these semigroups.