The one-block property in varieties of semigroups.
In [2] it was proved that all hypersubstitutions of type τ = (2) which are not idempotent and are different from the hypersubstitution whichmaps the binary operation symbol f to the binary term f(y,x) haveinfinite order. In this paper we consider the order of hypersubstitutionswithin given varieties of semigroups. For the theory of hypersubstitution see [3].
We show that semigroups representable by triangular matrices over a fixed finite field form a decidable pseudovariety and provide a finite pseudoidentity basis for it.
We show that semigroups representable by triangular matrices over a fixed finite field form a decidable pseudovariety and provide a finite pseudoidentity basis for it.
A hypersubstitution of a fixed type τ maps n-ary operation symbols of the type to n-ary terms of the type. Such a mapping induces a unique mapping defined on the set of all terms of type t. The kernel of this induced mapping is called the kernel of the hypersubstitution, and it is a fully invariant congruence relation on the (absolutely free) term algebra of the considered type ([2]). If V is a variety of type τ, we consider the composition of the natural homomorphism with the mapping induced...