Displaying 181 – 200 of 295

Showing per page

A structure theorem for right pp-semigroups with left central idempotents

Xue Ming Ren, Kar-Ping Shum (2000)

Discussiones Mathematicae - General Algebra and Applications

The concept of strong spined product of semigroups is introduced. We first show that a semigroup S is a rpp-semigroup with left central idempotents if and only if S is a strong semilattice of left cancellative right stripes. Then, we show that such kind of semigroups can be described by the strong spined product of a C-rpp-semigroup and a right normal band. In particular, we show that a semigroup is a rpp-semigroup with left central idempotents if and only if it is a right bin.

About presentations of braid groups and their generalizations

V. V. Vershinin (2014)

Banach Center Publications

In the paper we give a survey of rather new notions and results which generalize classical ones in the theory of braids. Among such notions are various inverse monoids of partial braids. We also observe presentations different from standard Artin presentation for generalizations of braids. Namely, we consider presentations with small number of generators, Sergiescu graph-presentations and Birman-Ko-Lee presentation. The work of V.~V.~Chaynikov on the word and conjugacy problems for the singular...

Currently displaying 181 – 200 of 295