Displaying 21 – 40 of 2556

Showing per page

A classification of rational languages by semilattice-ordered monoids

Libor Polák (2004)

Archivum Mathematicum

We prove here an Eilenberg type theorem: the so-called conjunctive varieties of rational languages correspond to the pseudovarieties of finite semilattice-ordered monoids. Taking complements of members of a conjunctive variety of languages we get a so-called disjunctive variety. We present here a non-trivial example of such a variety together with an equational characterization of the corresponding pseudovariety.

Currently displaying 21 – 40 of 2556