Displaying 41 – 60 of 183

Showing per page

Clifford congruences on generalized quasi-orthodox GV-semigroups

Sunil K. Maity (2013)

Discussiones Mathematicae - General Algebra and Applications

A semigroup S is said to be completely π-regular if for any a ∈ S there exists a positive integer n such that aⁿ is completely regular. A completely π-regular semigroup S is said to be a GV-semigroup if all the regular elements of S are completely regular. The present paper is devoted to the study of generalized quasi-orthodox GV-semigroups and least Clifford congruences on them.

Clifford semifields

Mridul K. Sen, Sunil K. Maity, Kar-Ping Shum (2004)

Discussiones Mathematicae - General Algebra and Applications

It is well known that a semigroup S is a Clifford semigroup if and only if S is a strong semilattice of groups. We have recently extended this important result from semigroups to semirings by showing that a semiring S is a Clifford semiring if and only if S is a strong distributive lattice of skew-rings. In this paper, we introduce the notions of Clifford semidomain and Clifford semifield. Some structure theorems for these semirings are obtained.

Combinatoric of syzygies for semigroup algebras.

Emilio Briales, Pilar Pisón, Antonio Campillo, Carlos Marijuán (1998)

Collectanea Mathematica

We describe how the graded minimal resolution of certain semigroup algebras is related to the combinatorics of some simplicial complexes. We obtain characterizations of the Cohen-Macaulay and Gorenstein conditions. The Cohen-Macaulay type is computed from combinatorics. As an application, we compute explicitly the graded minimal resolution of monomial both affine and simplicial projective surfaces.

Currently displaying 41 – 60 of 183