Displaying 661 – 680 of 2556

Showing per page

Extensive varieties

Jaroslav Ježek, Tomáš Kepka (1975)

Acta Universitatis Carolinae. Mathematica et Physica

Factorization in Krull monoids with infinite class group

Florian Kainrath (1999)

Colloquium Mathematicae

Let H be a Krull monoid with infinite class group and such that each divisor class of H contains a prime divisor. We show that for each finite set L of integers ≥2 there exists some h ∈ H such that the following are equivalent: (i) h has a representation h = u 1 · . . . · u k for some irreducible elements u i , (ii) k ∈ L.

Factorization properties of Krull monoids with infinite class group

Wolfgang Hassler (2002)

Colloquium Mathematicae

For a non-unit a of an atomic monoid H we call L H ( a ) = k | a = u . . . u k w i t h i r r e d u c i b l e u i H the set of lengths of a. Let H be a Krull monoid with infinite divisor class group such that each divisor class is the sum of a bounded number of prime divisor classes of H. We investigate factorization properties of H and show that H has sets of lengths containing large gaps. Finally we apply this result to finitely generated algebras over perfect fields with infinite divisor class group.

Finite basis problem for 2-testable monoids

Edmond Lee (2011)

Open Mathematics

A monoid S 1 obtained by adjoining a unit element to a 2-testable semigroup S is said to be 2-testable. It is shown that a 2-testable monoid S 1 is either inherently non-finitely based or hereditarily finitely based, depending on whether or not the variety generated by the semigroup S contains the Brandt semigroup of order five. Consequently, it is decidable in quadratic time if a finite 2-testable monoid is finitely based.

Currently displaying 661 – 680 of 2556