Semigroups with n-closed subsets.
I.L. Mel'nichuk (1989)
Semigroup forum
Donald H. Adams (1971)
Mathematische Zeitschrift
K.D. jr. Magill (1982)
Semigroup forum
M. Gutan (1996)
Semigroup forum
Víctor Blanco, Pedro A. García-Sánchez, Alfred Geroldinger (2010)
Actes des rencontres du CIRM
Arithmetical invariants—such as sets of lengths, catenary and tame degrees—describe the non-uniqueness of factorizations in atomic monoids.We study these arithmetical invariants by the monoid of relations and by presentations of the involved monoids. The abstract results will be applied to numerical monoids and to Krull monoids.
A. Nagy (1993)
Semigroup forum
M.S. Putcha (1974)
Semigroup forum
M. Ciric, S. Bogdanovic (1996)
Semigroup forum
T. Tamura (1982)
Semigroup forum
Y. Kobayashi (1984)
Semigroup forum
H.R.K. Iyengar (1971)
Semigroup forum
D.R. LaTorre (1974)
Semigroup forum
J. B. Fountain, P. Lockley (1977)
Semigroup forum
K.E. Osondu (1979)
Semigroup forum
D.W. Hardy, Y. Tirasupa (1976/1977)
Semigroup forum
K.G. Johnston (1986)
Semigroup forum
A. Cherubini, C. Bonzini (1990)
Monatshefte für Mathematik
J. M. Firsov (1977/1978)
Semigroup forum
J. Welnert (1982)
Semigroup forum
M. K. Sen, S. K. Maity (2004)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Recently, we have shown that a semiring is completely regular if and only if is a union of skew-rings. In this paper we show that a semiring satisfying can be embedded in a completely regular semiring if and only if is additive separative.