Free entropic groupoids
Frobenius algebras play an important role in the representation theory of finite groups. In the present work, we investigate the (quasi) Frobenius property of n-group algebras. Using the (quasi-) Frobenius property of ring, we can obtain some information about constructions of module category over this ring ([2], p. 66-67).
The purpose of this paper is to introduce the notions of ∈, ∈ ∨qk-fuzzy ideals of a fuzzy ordered semigroup with the ordering being a fuzzy relation. Several characterizations of ∈, ∈ ∨qk-fuzzy left (resp. right) ideals and ∈, ∈ ∨qk-fuzzy interior ideals are derived. The lattice structures of all ∈, ∈ ∨qk-fuzzy (interior) ideals on such fuzzy ordered semigroup are studied and some methods are given to construct an ∈, ∈ ∨qk-fuzzy (interior) ideals from an arbitrary fuzzy subset. Finally, the characterizations...
Hovey introduced A-cordial labelings in [4] as a simultaneous generalization of cordial and harmonious labelings. If A is an abelian group, then a labeling f: V(G) → A of the vertices of some graph G induces an edge-labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one. Research on A-cordiality...