Displaying 21 – 40 of 98

Showing per page

The equivariant universality and couniversality of the Cantor cube

Michael G. Megrelishvili, Tzvi Scarr (2001)

Fundamenta Mathematicae

Let ⟨G,X,α⟩ be a G-space, where G is a non-Archimedean (having a local base at the identity consisting of open subgroups) and second countable topological group, and X is a zero-dimensional compact metrizable space. Let H ( 0 , 1 ) , 0 , 1 , τ be the natural (evaluation) action of the full group of autohomeomorphisms of the Cantor cube. Then (1) there exists a topological group embedding φ : G H ( 0 , 1 ) ; (2) there exists an embedding ψ : X 0 , 1 , equivariant with respect to φ, such that ψ(X) is an equivariant retract of 0 , 1 with respect to φ...

The Lévy continuity theorem for nuclear groups

W. Banaszczyk (1999)

Studia Mathematica

Let G be an abelian topological group. The Lévy continuity theorem says that if G is an LCA group, then it has the following property (PL) a sequence of Radon probability measures on G is weakly convergent to a Radon probability measure μ if and only if the corresponding sequence of Fourier transforms is pointwise convergent to the Fourier transform of μ. Boulicaut [Bo] proved that every nuclear locally convex space G has the property (PL). In this paper we prove that the property (PL) is inherited...

The Lie groupoid analogue of a symplectic Lie group

David N. Pham (2021)

Archivum Mathematicum

A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a t -symplectic Lie groupoid; the “ t " is motivated by the fact that each target fiber of a t -symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid 𝒢 M , we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid...

The Lindelöf property and pseudo- 1 -compactness in spaces and topological groups

Constancio Hernández, Mihail G. Tkachenko (2008)

Commentationes Mathematicae Universitatis Carolinae

We introduce and study, following Z. Frol’ık, the class ( 𝒫 ) of regular P -spaces X such that the product X × Y is pseudo- 1 -compact, for every regular pseudo- 1 -compact P -space Y . We show that every pseudo- 1 -compact space which is locally ( 𝒫 ) is in ( 𝒫 ) and that every regular Lindelöf P -space belongs to ( 𝒫 ) . It is also proved that all pseudo- 1 -compact P -groups are in ( 𝒫 ) . The problem of characterization of subgroups of -factorizable (equivalently, pseudo- 1 -compact) P -groups is considered as well. We give some necessary...

Currently displaying 21 – 40 of 98