Displaying 61 – 80 of 925

Showing per page

Abelian pro-countable groups and orbit equivalence relations

Maciej Malicki (2016)

Fundamenta Mathematicae

We study a class of abelian groups that can be defined as Polish pro-countable groups, as non-archimedean groups with a compatible two-sided invariant metric or as quasi-countable groups, i.e., closed subdirect products of countable discrete groups, endowed with the product topology. We show that for every non-locally compact, abelian quasi-countable group G there exists a closed L ≤ G and a closed, non-locally compact K ≤ G/L which is a direct product of discrete countable groups....

Addition theorems and related geometric problems of group representation theory

Ekaterina Shulman (2013)

Banach Center Publications

The Levi-Civita functional equation f ( g h ) = k = 1 n u k ( g ) v k ( h ) (g,h ∈ G), for scalar functions on a topological semigroup G, has as the solutions the functions which have finite-dimensional orbits in the right regular representation of G, that is the matrix elements of G. In considerations of some extensions of the L-C equation one encounters with other geometric problems, for example: 1) which vectors x of the space X of a representation g T g have orbits O(x) that are “close” to a fixed finite-dimensional subspace? 2) for...

Algebraic aspects of web geometry

Maks A. Akivis, Vladislav V. Goldberg (2000)

Commentationes Mathematicae Universitatis Carolinae

Algebraic aspects of web geometry, namely its connections with the quasigroup and loop theory, the theory of local differential quasigroups and loops, and the theory of local algebras are discussed.

Almost all submaximal groups are paracompact and σ-discrete

O. Alas, I. Protasov, M. Tkačenko, V. Tkachuk, R. Wilson, I. Yaschenko (1998)

Fundamenta Mathematicae

We prove that any topological group of a non-measurable cardinality is hereditarily paracompact and strongly σ-discrete as soon as it is submaximal. Consequently, such a group is zero-dimensional. Examples of uncountable maximal separable spaces are constructed in ZFC.

Almost maximal topologies on groups

Yevhen Zelenyuk (2016)

Fundamenta Mathematicae

Let G be a countably infinite group. We show that for every finite absolute coretract S, there is a regular left invariant topology on G whose ultrafilter semigroup is isomorphic to S. As consequences we prove that (1) there is a right maximal idempotent in βG∖G which is not strongly right maximal, and (2) for each combination of the properties of being extremally disconnected, irresolvable, and nodec, except for the combination (-,-,+), there is a corresponding regular almost maximal left invariant...

Almost periodic compactifications of group extensions

H. D. Junghenn, Paul Milnes (2002)

Czechoslovak Mathematical Journal

Let N and K be groups and let G be an extension of N by K . Given a property 𝒫 of group compactifications, one can ask whether there exist compactifications N ' and K ' of N and K such that the universal 𝒫 -compactification of G is canonically isomorphic to an extension of N ' by K ' . We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties 𝒫 and then apply this result to the almost periodic and weakly almost periodic compactifications of G .

Currently displaying 61 – 80 of 925