On the Suslin number of subgroups of products of countable groups
A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, , such that whenever β ≤ α for all . The class of all metrizable topological groups is a proper subclass of the class of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group is metrizable, and hence G is strictly angelic. We deduce from this result...
For Hausdorff topological monoids, the concept of a unitary Cauchy net is a generalization of the concept of a fundamental sequence of reals. We consider properties and applications of such nets and of corresponding filters and prove, in particular, that the underlying set of a given monoid, endowed with the family of such filters, forms a Cauchy space whose convergence structure defines a uniform topology. A commutative monoid endowed with the corresponding uniformity is uniform. A distant purpose...
The concept of a unitary Cauchy net in an arbitrary Hausdorff topological monoid generalizes the concept of a fundamental sequence of reals. We construct extensions of this monoid where all its unitary Cauchy nets converge.
We study some embeddings of suitably topologized spaces of vector-valued smooth functions on topological groups, where smoothness is defined via differentiability along continuous one-parameter subgroups. As an application, we investigate the canonical correspondences between the universal enveloping algebra, the invariant local operators, and the convolution algebra of distributions supported at the unit element of any finite-dimensional Lie group, when one passes from finite-dimensional Lie groups...
Improving the recent result of the author we show that is equivalent to for every subgroup of a Hausdorff locally compact group .
The theory of covering spaces is often used to prove the Nielsen-Schreier theorem, which states that every subgroup of a free group is free. We apply the more general theory of semicovering spaces to obtain analogous subgroup theorems for topological groups: Every open subgroup of a free Graev topological group is a free Graev topological group. An open subgroup of a free Markov topological group is a free Markov topological group if and only if it is disconnected.
We prove that the semigroup operation of a topological semigroup extends to a continuous semigroup operation on its Stone-Čech compactification provided is a pseudocompact openly factorizable space, which means that each map to a second countable space can be written as the composition of an open map onto a second countable space and a map . We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.
Let be a source locally trivial proper Lie groupoid such that each orbit is of finite type. The orbit projection is a fibration if and only if is regular.