Displaying 41 – 60 of 83

Showing per page

Minkowski’s inequality and sums of squares

Péter Frenkel, Péter Horváth (2014)

Open Mathematics

Positive polynomials arising from Muirhead’s inequality, from classical power mean and elementary symmetric mean inequalities and from Minkowski’s inequality can be rewritten as sums of squares.

Modular inequalities for the Hardy averaging operator

Hans P. Heinig (1999)

Mathematica Bohemica

If P is the Hardy averaging operator - or some of its generalizations, then weighted modular inequalities of the form u (Pf) Cv (f) are established for a general class of functions φ . Modular inequalities for the two- and higher dimensional Hardy averaging operator are also given.

On the proof of Erdős' inequality

Lai-Yi Zhu, Da-Peng Zhou (2017)

Czechoslovak Mathematical Journal

Using undergraduate calculus, we give a direct elementary proof of a sharp Markov-type inequality p ' [ - 1 , 1 ] 1 2 p [ - 1 , 1 ] for a constrained polynomial p of degree at most n , initially claimed by P. Erdős, which is different from the one in the paper of T. Erdélyi (2015). Whereafter, we give the situations on which the equality holds. On the basis of this inequality, we study the monotone polynomial which has only real zeros all but one outside of the interval ( - 1 , 1 ) and establish a new asymptotically sharp inequality.

Currently displaying 41 – 60 of 83