A curious property of series involving terms of generalized sequences.
Page 1
Brugia, Odoardo, Filipponi, Piero (2000)
International Journal of Mathematics and Mathematical Sciences
Niculescu, Constantin P. (2000)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Yang, Xiaofan, Sun, Fangkuan, Tang, Yuan Yan (2008)
Discrete Dynamics in Nature and Society
Wang, Kunyang (2006)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Yang, Xiaofan, Yang, Maobin, Liu, Huaiyi (2007)
Journal of Inequalities and Applications [electronic only]
Eggleton, Roger B., Galvin, William P. (2002)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
J. B. M. Melissen, M. El Ghami (2015)
Colloquium Mathematicae
Horst Alzer, Stamatis Koumandos (2003)
Colloquium Mathematicae
We prove that for all integers n ≥ 1 and real numbers x. The upper bound Si(π) is best possible. This result refines inequalities due to Fejér (1910) and Lenz (1951).
Sever S. Dragomir (2005)
Kragujevac Journal of Mathematics
Neubauer, Michael G., Watkins, William (2006)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Wu, Shan-He, Bencze, Mihály (2009)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Nikolov, Geno (1999)
Journal of Inequalities and Applications [electronic only]
Horst Alzer (1995)
Commentationes Mathematicae Universitatis Carolinae
We prove: If then The constant is the best possible.
Omer Friedland, Yosef Yomdin (2013)
Studia Mathematica
The main observation of this note is that the Lebesgue measure μ in the Turán-Nazarov inequality for exponential polynomials can be replaced with a certain geometric invariant ω ≥ μ, which can be effectively estimated in terms of the metric entropy of a set, and may be nonzero for discrete and even finite sets. While the frequencies (the imaginary parts of the exponents) do not enter the original Turán-Nazarov inequality, they necessarily enter the definition of ω.
Frappier, Clément (2005)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Stojan Radenović, Mirjana Pavlović (2003)
Kragujevac Journal of Mathematics
Eggleton, Roger B., Galvin, William P. (2002)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Page 1