Page 1

Displaying 1 – 7 of 7

Showing per page

Calculations of graded ill-known sets

Masahiro Inuiguchi (2014)

Kybernetika

To represent a set whose members are known partially, the graded ill-known set is proposed. In this paper, we investigate calculations of function values of graded ill-known sets. Because a graded ill-known set is characterized by a possibility distribution in the power set, the calculations of function values of graded ill-known sets are based on the extension principle but generally complex. To reduce the complexity, lower and upper approximations of a given graded ill-known set are used at the...

Characterization of Globally Lipschitz Nemytskiĭ Operators Between Spaces of Set-Valued Functions of Bounded φ-Variation in the Sense of Riesz

N. Merentes, J. L. Sánchez Hernández (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Let (X,∥·∥) and (Y,∥·∥) be two normed spaces and K be a convex cone in X. Let CC(Y) be the family of all non-empty convex compact subsets of Y. We consider the Nemytskiĭ operators, i.e. the composition operators defined by (Nu)(t) = H(t,u(t)), where H is a given set-valued function. It is shown that if the operator N maps the space R V φ ( [ a , b ] ; K ) into R W φ ( [ a , b ] ; C C ( Y ) ) (both are spaces of functions of bounded φ-variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form H(t,u(t)) = A(t)u(t)...

Concave iteration semigroups of linear continuous set-valued functions

Andrzej Smajdor, Wilhelmina Smajdor (2012)

Open Mathematics

Let F t: t ≥ 0 be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) − F t (x) exist for x ∈ K and t > 0, then D t F t (x) = (−1)F t ((−1)G(x)) for x ∈ K and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and G ( x ) = lim s 0 F 0 x - F s x F 0 x - F s x - s - s for x ∈ K.

Covering dimension and differential inclusions

Giovanni Anello (2000)

Commentationes Mathematicae Universitatis Carolinae

In this paper we shall establish a result concerning the covering dimension of a set of the type { x X : Φ ( x ) Ψ ( x ) } , where Φ , Ψ are two multifunctions from X into Y and X , Y are real Banach spaces. Moreover, some applications to the differential inclusions will be given.

Currently displaying 1 – 7 of 7

Page 1