The Additive Exhaustive Functions On M-Lattice
In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral exists if , and . In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.
This paper generalizes the results of papers which deal with the Kurzweil-Henstock construction of an integral in ordered spaces. The definition is given and some limit theorems for the integral of ordered group valued functions defined on a Hausdorff compact topological space with respect to an ordered group valued measure are proved in this paper.