Haar measure is not approximable by balls.
We study the σ-ideal of Haar null sets on Polish groups. It is shown that on a non-locally compact Polish group with an invariant metric this σ-ideal is closely related, in a precise sense, to the σ-ideal of non-dominating subsets of . Among other consequences, this result implies that the family of closed Haar null sets on a Polish group with an invariant metric is Borel in the Effros Borel structure if, and only if, the group is locally compact. This answers a question of Kechris. We also obtain...
There is no constraint on the relation between the Fourier and Hausdorff dimension of a set beyond the condition that the Fourier dimension must not exceed the Hausdorff dimension.
We show that almost every function (in the sense of prevalence) in a Sobolev space is multifractal: Its regularity changes from point to point; the sets of points with a given Hölder regularity are fractal sets, and we determine their Hausdorff dimension.
Subadditivity of capacities is defined initially on the compact sets and need not extend to all sets. This paper explores to what extent subadditivity holds. It presents some incidental results that are valid for all subadditive capacities. The main result states that for all hull-additive capacities (a class that contains the strongly subadditive capacities) there is countable subadditivity on a class at least as large as the universally measurable sets (so larger than the analytic sets).