Scattering length and capacity
An expression in terms of the Wiener integral for the “scattering length” is given and used to discuss the relation between this quantity and electrostatic capacity.
The search session has expired. Please query the service again.
Page 1 Next
M. Kac, J. M. Luttinger (1975)
Annales de l'institut Fourier
An expression in terms of the Wiener integral for the “scattering length” is given and used to discuss the relation between this quantity and electrostatic capacity.
Ulrich Oppel (1973)
Manuscripta mathematica
Henry Helson (1979)
Bulletin de la Société Mathématique de France
Jean Jacod (1973)
Annales de l'I.H.P. Probabilités et statistiques
J. Goldstein (1976)
Semigroup forum
Adriana Brogini Bratti (1984)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Following H. Sato - Y. Okazaky we will prove that: if is a topological vector space, locally convex and reflexive, and is a gaussian measure on , then is separable.
Kawabe, Jun (2001)
Georgian Mathematical Journal
Del Campo, Ricardo, De Amo, Enrique (2007)
Sibirskij Matematicheskij Zhurnal
Jaroslav Mohapl (1992)
Mathematica Slovaca
J. Fernández Novoa (1990)
Collectanea Mathematica
We extend some known sigma-finiteness and regularity results for (locally finite) Radon measures to locally sigma-finite or locally moderated Radon measures of type (H), and we obtain other new ones. The main result states that the regularity and the sigma-finiteness are equivalent for alllocally moderated, diffused, Radon measures of type (H) in a T1 topological space which is either weakly metacompact or paralindelöf (resp. metalindelöf) and has a concassage of Lindelöf (resp. separable) subsets....
Petr Lachout (1995)
Acta Universitatis Carolinae. Mathematica et Physica
J.-P. Reus Christensen, Pal Fischer (1987)
Aequationes mathematicae
Marlies Gerber, Anatole Katok (1982)
Annales scientifiques de l'École Normale Supérieure
Traina, Charles (1999)
International Journal of Mathematics and Mathematical Sciences
José L. de María, Baltasar Rodríguez-Salinas (1984)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Seung Chang, Hyun Chung, David Skoug (2013)
Open Mathematics
In this paper we obtain several basic formulas for generalized integral transforms, convolution products, first variations and inverse integral transforms of functionals defined on function space.
Meziani, I. (2005)
Acta Mathematica Universitatis Comenianae. New Series
Martin Kalina, Pavol Zlatoš (1990)
Commentationes Mathematicae Universitatis Carolinae
Richard Becker (1977)
Séminaire Choquet. Initiation à l'analyse
Luigi Ambrosio, Michele Miranda Jr., Diego Pallara (2015)
Analysis and Geometry in Metric Spaces
In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time behaviour of the Ornstein-Uhlenbeck semigroup following an approach due to Ledoux.
Page 1 Next