Displaying 21 – 40 of 169

Showing per page

Approximation of entire functions of slow growth on compact sets

G. S. Srivastava, Susheel Kumar (2009)

Archivum Mathematicum

In the present paper, we study the polynomial approximation of entire functions of several complex variables. The characterizations of generalized order and generalized type of entire functions of slow growth have been obtained in terms of approximation and interpolation errors.

Asymptotic stability for sets of polynomials

Thomas W. Müller, Jan-Christoph Schlage-Puchta (2005)

Archivum Mathematicum

We introduce the concept of asymptotic stability for a set of complex functions analytic around the origin, implicitly contained in an earlier paper of the first mentioned author (“Finite group actions and asymptotic expansion of e P ( z ) ", Combinatorica 17 (1997), 523 – 554). As a consequence of our main result we find that the collection of entire functions exp ( 𝔓 ) with 𝔓 the set of all real polynomials P ( z ) satisfying Hayman’s condition [ z n ] exp ( P ( z ) ) > 0 ( n n 0 ) is asymptotically stable. This answers a question raised in loc. cit.

Currently displaying 21 – 40 of 169