Displaying 101 – 120 of 169

Showing per page

Quotients de fonctions entières et quotients de Hadamard de séries formelles

Jean-Paul Bézivin (1989)

Annales de l'institut Fourier

Dans cet article, nous démontrons deux résultats. L’un concerne les séries f ' ( z ) = a ( n ) z n / n ! telles que a ( n ) x n est une série algébrique. Soit A E cet ensemble de fonctions. Si f appartient à A E , et si g ( z ) est un polynôme-exponentiel tel que h ( z ) = f ( z ) / g ( z ) est entière, alors il existe un polynôme P ( z ) tel que P ( z ) h ( z ) appartienne à A E .L’autre résultat est parallèle au premier. Soit u ( n ) x n une série algébrique à coefficients dans un corps 𝕂 (qui est soit 𝕂 , soit un corps quadratique imaginaire). Soit v ( n ) x n une série rationnelle à coefficients dans 𝕂 . Avec...

Series in Mittag-Leffler Functions: Inequalities and Convergent Theorems

Paneva-Konovska, Jordanka (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 30A10, 30B10, 30B30, 30B50, 30D15, 33E12In studying the behaviour of series, defined by means of the Mittag-Leffler functions, on the boundary of its domain of convergence in the complex plane, we prove Cauchy-Hadamard, Abel, Tauber and Littlewood type theorems. Asymptotic formulae are also provided for the Mittag-Leffler functions in the case of " values of indices that are used in the proofs of the convergence theorems for the considered series.

Sous-espaces fermés de séries universelles sur un espace de Fréchet

Quentin Menet (2011)

Studia Mathematica

We improve a result of Charpentier [Studia Math. 198 (2010)]. We prove that even on Fréchet spaces with a continuous norm, the existence of only one restrictively universal series implies the existence of a closed infinite-dimensional subspace of restrictively universal series.

Currently displaying 101 – 120 of 169