Page 1

Displaying 1 – 2 of 2

Showing per page

Flows of Mellin transforms with periodic integrator

Titus Hilberdink (2011)

Journal de Théorie des Nombres de Bordeaux

We study Mellin transforms N ^ ( s ) = 1 - x - s d N ( x ) for which N ( x ) - x is periodic with period 1 in order to investigate ‘flows’ of such functions to Riemann’s ζ ( s ) and the possibility of proving the Riemann Hypothesis with such an approach. We show that, excepting the trivial case where N ( x ) = x , the supremum of the real parts of the zeros of any such function is at least 1 2 .We investigate a particular flow of such functions { N λ ^ } λ 1 which converges locally uniformly to ζ ( s ) as λ 1 , and show that they exhibit features similar to ζ ( s ) . For example, N λ ^ ( s ) ...

Currently displaying 1 – 2 of 2

Page 1