Zero distribution of sequences of classical orthogonal polynomials.
Page 1
Simeonov, Plamen (2003)
Abstract and Applied Analysis
Laurent Baratchart, Reinhold Küstner, Vilmos Totik (2005)
Annales de l’institut Fourier
We develop a new method to prove asymptotic zero distribution for different kinds of orthogonal polynomials. The method directly uses the orthogonality relations. We illustrate the procedure in four cases: classical orthogonality, non-Hermitian orthogonality, orthogonality in rational approximation of Markov functions and its non- Hermitian variant.
D.W. Masser, G. Wüstholz (1981)
Inventiones mathematicae
D.W. Masser, G. Wüstholz (1985)
Inventiones mathematicae
Carl. D. Offner (1980)
Mathematische Zeitschrift
Eiermann, Michael, Varga, Richard S. (1993)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Enrico Bombieri, Alberto Perelli (2001)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Under certain mild analytic assumptions one obtains a lower bound, essentially of order , for the number of zeros and poles of a Dirichlet series in a disk of radius . A more precise result is also obtained under more restrictive assumptions but still applying to a large class of Dirichlet series.
A.J. POORTEN van der (1974/1975)
Seminaire de Théorie des Nombres de Bordeaux
Shmerkin, Pablo, Solomyak, Boris (2006)
Experimental Mathematics
Addisalem Abathun, Rikard Bøgvad (2018)
Czechoslovak Mathematical Journal
We prove that as , the zeros of the polynomial cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al. (1999–2001) to the case of a complex parameter and partially proves a conjecture made by the authors in an earlier work.
M. Jevtić (1981)
Matematički Vesnik
Janson, Svante, Norfolk, Timothy S. (2009)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
Kovacheva, Ralitza K. (2008)
Serdica Mathematical Journal
2000 Mathematics Subject Classification: 30B40, 30B10, 30C15, 31A15.We are concerned with overconvergent power series. The main idea is to relate the distribution of the zeros of subsequences of partial sums and the phenomenon of overconvergence. Sufficient conditions for a power series to be overconvergent in terms of the distribution of the zeros of a subsequence are provided, and results of Jentzsch-Szegö type about the asymptotic distribution of the zeros of overconvergent subsequences are stated....
Stolarsky, Kenneth B. (1982)
International Journal of Mathematics and Mathematical Sciences
Hermann Hering (1984)
Elemente der Mathematik
Erwin Mues (1971)
Mathematische Zeitschrift
Gerhard Schmeißer (1971)
Rendiconti del Seminario Matematico della Università di Padova
Gerhard Schmeißer (1972)
Mathematische Zeitschrift
Page 1