On a certain class of harmonic multivalent functions.
In this note, we improve the idea of the Tsallis entropy in a complex domain. This improvement is contingent on the fractional operator in a complex domain (type Alexander). We clarify some new classes of analytic functions, which are planned in view of the geometry function theory. This category of entropy is called fractional entropy; accordingly, we demand them fractional entropic geometry classes. Other geometric properties are established in the sequel. Our exhibition is supported by the Maxwell...
Let D = z: Re z < 0 and let S*(D) be the class of univalent functions normalized by the conditions , a a finite complex number, 0 ∉ f(D), and mapping D onto a domain f(D) starlike with respect to the exterior point w = 0. Some estimates for |f(z)| in the class S*(D) are derived. An integral formula for f is also given.