Coefficient problem for a class of Mocanu-Bazilevič functions
We present some results connected with estimation of the coefficients for some special class of functions holomorphic in the unit disc and defined by subordination to some multivalent functions.
Radii of convexity, starlikeness, lemniscate starlikeness and close-to-convexity are determined for the convex combination of the identity map and a normalized convex function F given by f(z) = α z+(1−α)F(z).
We study functions f(z) which are meromorphic and univalent in the unit disk with a simple pole at z = p, 0 < p < 1, and which map the unit disk onto a domain whose complement is either convex or is starlike with respect to a point w₀ ≠ 0.