Displaying 1061 – 1080 of 1148

Showing per page

Univalence, strong starlikeness and integral transforms

M. Obradović, S. Ponnusamy, P. Vasundhra (2005)

Annales Polonici Mathematici

Let represent the class of all normalized analytic functions f in the unit disc Δ. In the present work, we first obtain a necessary condition for convex functions in Δ. Conditions are established for a certain combination of functions to be starlike or convex in Δ. Also, using the Hadamard product as a tool, we obtain sufficient conditions for functions to be in the class of functions whose real part is positive. Moreover, we derive conditions on f and μ so that the non-linear integral transform...

[unknown]

П.И. Сижук (1975)

Sibirskij matematiceskij zurnal

Variability regions of close-to-convex functions

Takao Kato, Toshiyuki Sugawa, Li-Mei Wang (2014)

Annales Polonici Mathematici

M. Biernacki gave in 1936 concrete forms of the variability regions of z/f(z) and zf'(z)/f(z) of close-to-convex functions f for a fixed z with |z|<1. The forms are, however, not necessarily convenient to determine the shape of the full variability region of zf'(z)/f(z) over all close-to-convex functions f and all points z with |z|<1. We propose a couple of other forms of the variability regions and see that the full variability region of zf'(z)/f(z) is indeed the complex plane minus the origin....

Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions

S. Sivasubramanian, R. Sivakumar, S. Kanas, Seong-A Kim (2015)

Annales Polonici Mathematici

Let σ denote the class of bi-univalent functions f, that is, both f(z) = z + a₂z² + ⋯ and its inverse f - 1 are analytic and univalent on the unit disk. We consider the classes of strongly bi-close-to-convex functions of order α and of bi-close-to-convex functions of order β, which turn out to be subclasses of σ. We obtain upper bounds for |a₂| and |a₃| for those classes. Moreover, we verify Brannan and Clunie’s conjecture |a₂| ≤ √2 for some of our classes. In addition, we obtain the Fekete-Szegö relation...

Currently displaying 1061 – 1080 of 1148