Displaying 121 – 140 of 353

Showing per page

On geometric convergence of discrete groups

Shihai Yang (2014)

Czechoslovak Mathematical Journal

One of the basic questions in the Kleinian group theory is to understand both algebraic and geometric limiting behavior of sequences of discrete subgroups. In this paper we consider the geometric convergence in the setting of the isometric group of the real or complex hyperbolic space. It is known that if Γ is a non-elementary finitely generated group and ρ i : Γ SO ( n , 1 ) a sequence of discrete and faithful representations, then the geometric limit of ρ i ( Γ ) is a discrete subgroup of SO ( n , 1 ) . We generalize this result by...

On Hölder regularity for elliptic equations of non-divergence type in the plane

Albert Baernstein II, Leonid V. Kovalev (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

This paper is concerned with strong solutions of uniformly elliptic equations of non-divergence type in the plane. First, we use the notion of quasiregular gradient mappings to improve Morrey’s theorem on the Hölder continuity of gradients of solutions. Then we show that the Gilbarg-Serrin equation does not produce the optimal Hölder exponent in the considered class of equations. Finally, we propose a conjecture for the best possible exponent and prove it under an additional restriction.

On the complexification of real-analytic polynomial mappings of ℝ²

Ewa Ligocka (2006)

Annales Polonici Mathematici

We give a simple algebraic condition on the leading homogeneous term of a polynomial mapping from ℝ² into ℝ² which is equivalent to the fact that the complexification of this mapping can be extended to a polynomial endomorphism of ℂℙ². We also prove that this extension acts on ℂℙ²∖ℂ² as a quotient of finite Blaschke products.

Currently displaying 121 – 140 of 353