Univalent functions with range restrictions.
We complete the proof of a conjecture of Vitushkin that says that if E is a compact set in the complex plane with finite 1-dimensional Hausdorff measure, then E has vanishing analytic capacity (i.e., all bounded anlytic functions on the complement of E are constant) if and only if E is purely unrectifiable (i.e., the intersection of E with any curve of finite length has zero 1-dimensional Hausdorff measure). As in a previous paper with P. Mattila, the proof relies on a rectifiability criterion using...
Given a probability measure μ with non-polar compact support K, we define the n-th Widom factor W²ₙ(μ) as the ratio of the Hilbert norm of the monic n-th orthogonal polynomial and the n-th power of the logarithmic capacity of K. If μ is regular in the Stahl-Totik sense then the sequence has subexponential growth. For measures from the Szegő class on [-1,1] this sequence converges to some proper value. We calculate the corresponding limit for the measure that generates the Jacobi polynomials, analyze...