Ahlfors-Weill extensions of conformal mappings and critical points of the Poincaré metric.
In this paper an alternative characterization of the class of functions called k -uniformly convex is found. Various relations concerning connections with other classes of univalent functions are given. Moreover a new class of univalent functions, analogous to the ’Mocanu class’ of functions, is introduced. Some results concerning this class are derived.
MSC 2010: 30C45Applying the Bernardi integral operator, an interesting convolution integral is introduced. The object of the present paper is to derive some convolution integral properties of functions f(z) to be in the subclasses of the classes S*(α) and Κ(α) by making use of their coefficient inequalities.
We give a new proof of a Phragmén Lindelöf theorem due to W.H.J. Fuchs and valid for an arbitrary open subset of the complex plane: if is analytic on , bounded near the boundary of , and the growth of is at most polynomial then either is bounded or for some positive and has a simple pole.
We introduce and study some new subclasses of starlike, convex and close-to-convex functions defined by the generalized Bessel operator. Inclusion relations are established and integral operator in these subclasses is discussed.
MSC 2010: 30C45, 30A20, 34A30The notion of differential superordination was introduced in [4] by S.S. Miller and P.T. Mocanu as a dual concept of differential subordination [3] and was developed in [5]. The notion of strong differential subordination was introduced by J.A. Antonino and S. Romaguera in [1]. In [6] the author introduced the dual concept of strong differential superordination. In this paper we study strong differential superordination using the subordination chains.