Applications of differential subordination to certain subclasses of meromorphically multivalent functions.
MSC 2010: 30C45, 30C55The aim of this paper is to give some applications of subordination principle to log-harmonic mappings.
Let denote the set of functions holomorphic in the unit disc, normalized clasically: , whereas is an arbitrarily fixed subset. In this paper various properties of the classes , of functions of the form are studied, where , , and denotes the Hadamard product of the functions and . Some special cases of the set were considered by other authors (see, for example, [15],[6],[3]).
2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15By making use of the fractional differential operator Ω^λz (0 ≤ λ < 1) due to Owa and Srivastava, a new subclass of univalent functions denoted by k−SPλ (0 ≤ k < ∞) is introduced. The class k−SPλ unifies the concepts of k-uniformly convex functions and k-starlike functions. Certain basic properties of k − SPλ such as inclusion theorem, subordination theorem, growth theorem and class preserving transforms are studied.*...
By using the theory of first-order differential subordination for functions with fixed initial coefficient, several well-known results for subclasses of univalent functions are improved by restricting the functions to have fixed second coefficient. The influence of the second coefficient of univalent functions becomes evident in the results obtained.
The survey collects many recent advances on area Nevanlinna type classes and related spaces of analytic functions in the unit disk concerning zero sets and factorization representations of these classes and discusses approaches, used in proofs of these results.