Displaying 21 – 40 of 43

Showing per page

Bilipschitz extensions from smooth manifolds.

Taneli Huuskonen, Juha Partanen, Jussi Väisälä (1995)

Revista Matemática Iberoamericana

We prove that every compact C1-submanifold of Rn, with or without boundary, has the bilipschitz extension property in Rn.

Boundary subordination

Adam Lecko (2012)

Annales Polonici Mathematici

We study the idea of the boundary subordination of two analytic functions. Some basic properties of the boundary subordination are discussed. Applications to classes of univalent functions referring to a boundary point are demonstrated.

Bounded holomorphic functions with multiple sheeted pluripolar hulls

Armen Edigarian, Józef Siciak, Włodzimierz Zwonek (2006)

Studia Mathematica

We describe compact subsets K of ∂𝔻 and ℝ admitting holomorphic functions f with the domains of existence equal to ℂ∖K and such that the pluripolar hulls of their graphs are infinitely sheeted. The paper is motivated by a recent paper of Poletsky and Wiegerinck.

Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions

Bappaditya Bhowmik, Sambhunath Sen (2024)

Czechoslovak Mathematical Journal

It is known that if f is holomorphic in the open unit disc 𝔻 of the complex plane and if, for some c > 0 , | f ( z ) | 1 / ( 1 - | z | 2 ) c , z 𝔻 , then | f ' ( z ) | 2 ( c + 1 ) / ( 1 - | z | 2 ) c + 1 . We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in 𝔻 . In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.

Currently displaying 21 – 40 of 43